QQ登录

只需要一步,快速开始

APP扫码登录

只需要一步,快速开始

查看: 2668|回复: 0

[Python] Python图片验证码降噪和8邻域降噪

[复制链接]

等级头衔

积分成就    金币 : 2861
   泡泡 : 1516
   精华 : 6
   在线时间 : 1322 小时
   最后登录 : 2025-11-29

丰功伟绩

优秀达人突出贡献荣誉管理论坛元老活跃会员

联系方式
发表于 2021-8-28 10:25:40 | 显示全部楼层 |阅读模式
一、简介& C& |+ n! c  }1 b8 g: l4 U
       图片验证码识别的可以分为几个步骤,一般用 Pillow 库或 OpenCV 来实现:! t2 Q, {% ~9 b) ^! V, e. |
1.灰度处理&二值化
' j' i# B! i" b* `3 s3 t2.降噪9 ]% [) Q  G+ _6 b
3.字符分割' o# C% o' |; M  b4 ]
4.标准化/ ^0 }8 c/ k% J. L! t
5.识别7 }6 R0 F! `+ Z
       所谓降噪就是把不需要的信息通通去除,比如背景,干扰线,干扰像素等等,只留下需要识别的字符,让图片变成2进制点阵,方便代入模型训练。/ n8 O. y% v0 Q4 P3 H" x& J5 @
二、8邻域降噪8 E8 H! `/ v' a0 Y2 \
       8邻域降噪 的前提是将图片灰度化,即将彩色图像转化为灰度图像。以RGN色彩空间为例,彩色图像中每个像素的颜色由R 、G、B三个分量决定,每个分量由0到255种取值,这个一个像素点可以有一千多万种颜色变化。而灰度则是将三个分量转化成一个,使每个像素点只有0-255种取值,这样可以使后续的图像计算量变得少一些。
; U/ v" c* F$ K 1.jpg
2 p% L) }" P( a2 J; s6 g       以上面的灰度图片为例,图片越接近白色的点像素越接近255,越接近黑色的点像素越接近0,而且验证码字符肯定是非白色的。对于其中噪点大部分都是孤立的小点的,而且字符都是串联在一起的。8邻域降噪 的原理就是依次遍历图中所有非白色的点,计算其周围8个点中属于非白色点的个数,如果数量小于一个固定值,那么这个点就是噪点。对于不同类型的验证码这个阈值是不同的,所以可以在程序中配置,不断尝试找到最佳的阈值。4 i$ y$ f. I. W" i' I9 ?$ x
       经过测试8邻域降噪 对于小的噪点的去除是很有效的,而且计算量不大,下图是阈值设置为4去噪后的结果:
  P1 R2 F6 i4 \ 2.jpg 8 m1 ?6 Q- Z5 _' x: h" k5 O# }
三、Pillow实现
' M. Z/ n  W' d6 o3 l: V       下面是使用 Pillow 模块的实现代码:
' N% n) L! |5 S& ?8 P. u
from PIL import Image
 
 
def noise_remove_pil(image_name, k):
    """
    8邻域降噪
    Args:
        image_name: 图片文件命名
        k: 判断阈值
 
    Returns:
 
    """
 
    def calculate_noise_count(img_obj, w, h):
        """
        计算邻域非白色的个数
        Args:
            img_obj: img obj
            w: width
            h: height
        Returns:
            count (int)
        """
        count = 0
        width, height = img_obj.size
        for _w_ in [w - 1, w, w + 1]:
            for _h_ in [h - 1, h, h + 1]:
                if _w_ > width - 1:
                    continue
                if _h_ > height - 1:
                    continue
                if _w_ == w and _h_ == h:
                    continue
                if img_obj.getpixel((_w_, _h_)) < 230:  # 这里因为是灰度图像,设置小于230为非白色
                    count += 1
        return count
 
    img = Image.open(image_name)
    # 灰度
    gray_img = img.convert('L')
 
    w, h = gray_img.size
    for _w in range(w):
        for _h in range(h):
            if _w == 0 or _h == 0:
                gray_img.putpixel((_w, _h), 255)
                continue
            # 计算邻域非白色的个数
            pixel = gray_img.getpixel((_w, _h))
            if pixel == 255:
                continue
 
            if calculate_noise_count(gray_img, _w, _h) < k:
                gray_img.putpixel((_w, _h), 255)
    return gray_img
 
 
if __name__ == '__main__':
    image = noise_remove_pil("test.jpg", 4)
    image.show()
四、OpenCV实现
0 ~- F- q5 a8 m  z       使用OpenCV可以提高计算效率:
0 r3 A& q9 ~+ C7 M( b. d; n
import cv2
 
 
def noise_remove_cv2(image_name, k):
    """
    8邻域降噪
    Args:
        image_name: 图片文件命名
        k: 判断阈值
 
    Returns:
 
    """
 
    def calculate_noise_count(img_obj, w, h):
        """
        计算邻域非白色的个数
        Args:
            img_obj: img obj
            w: width
            h: height
        Returns:
            count (int)
        """
        count = 0
        width, height = img_obj.shape
        for _w_ in [w - 1, w, w + 1]:
            for _h_ in [h - 1, h, h + 1]:
                if _w_ > width - 1:
                    continue
                if _h_ > height - 1:
                    continue
                if _w_ == w and _h_ == h:
                    continue
                if img_obj[_w_, _h_] < 230:  # 二值化的图片设置为255
                    count += 1
        return count
 
    img = cv2.imread(image_name, 1)
    # 灰度
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    w, h = gray_img.shape
    for _w in range(w):
        for _h in range(h):
            if _w == 0 or _h == 0:
                gray_img[_w, _h] = 255
                continue
            # 计算邻域pixel值小于255的个数
            pixel = gray_img[_w, _h]
            if pixel == 255:
                continue
 
            if calculate_noise_count(gray_img, _w, _h) < k:
                gray_img[_w, _h] = 255
 
    return gray_img
 
 
if __name__ == '__main__':
    image = noise_remove_cv2("test.jpg", 4)
    cv2.imshow('img', image)
    cv2.waitKey(10000)
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|手机版|小黑屋|paopaomj.COM ( 渝ICP备18007172号|渝公网安备50010502503914号 )

GMT+8, 2025-12-24 18:22

Powered by paopaomj X3.5 © 2016-2025 sitemap

快速回复 返回顶部 返回列表