一、简介
7 E0 W4 ?$ I& O# x" k- v 图片验证码识别的可以分为几个步骤,一般用 Pillow 库或 OpenCV 来实现:3 X5 `1 h! K7 }4 e q7 G
1.灰度处理&二值化
/ ^- {0 ~! q5 o3 }! w2.降噪* s0 }) w% S" C5 P. \$ q9 A
3.字符分割! a0 ^' l' n+ |+ v$ j O% t2 p
4.标准化
2 x5 l( V7 S( m: _6 t5.识别4 }+ Q" ?1 Z9 t" b' S/ P* c3 @: G) S
所谓降噪就是把不需要的信息通通去除,比如背景,干扰线,干扰像素等等,只留下需要识别的字符,让图片变成2进制点阵,方便代入模型训练。
1 X! `1 L8 G b2 M L" O+ F二、8邻域降噪
. o1 o& n. Y x! B6 V 8邻域降噪 的前提是将图片灰度化,即将彩色图像转化为灰度图像。以RGN色彩空间为例,彩色图像中每个像素的颜色由R 、G、B三个分量决定,每个分量由0到255种取值,这个一个像素点可以有一千多万种颜色变化。而灰度则是将三个分量转化成一个,使每个像素点只有0-255种取值,这样可以使后续的图像计算量变得少一些。
( Q% g+ S' }# g, M- ~9 {# Y) g
/ F0 l" D& Y, p! Q. r2 g0 g 以上面的灰度图片为例,图片越接近白色的点像素越接近255,越接近黑色的点像素越接近0,而且验证码字符肯定是非白色的。对于其中噪点大部分都是孤立的小点的,而且字符都是串联在一起的。8邻域降噪 的原理就是依次遍历图中所有非白色的点,计算其周围8个点中属于非白色点的个数,如果数量小于一个固定值,那么这个点就是噪点。对于不同类型的验证码这个阈值是不同的,所以可以在程序中配置,不断尝试找到最佳的阈值。
( ?2 @$ z" y" _5 N5 ]' {! K 经过测试8邻域降噪 对于小的噪点的去除是很有效的,而且计算量不大,下图是阈值设置为4去噪后的结果:
8 K( F3 `$ e! L, t ~
3 ~9 W! F) C* R1 n3 [- s7 t
三、Pillow实现! a7 I& r* P, I
下面是使用 Pillow 模块的实现代码:3 C" \/ {3 t# |$ X
from PIL import Image
def noise_remove_pil(image_name, k):
"""
8邻域降噪
Args:
image_name: 图片文件命名
k: 判断阈值
Returns:
"""
def calculate_noise_count(img_obj, w, h):
"""
计算邻域非白色的个数
Args:
img_obj: img obj
w: width
h: height
Returns:
count (int)
"""
count = 0
width, height = img_obj.size
for _w_ in [w - 1, w, w + 1]:
for _h_ in [h - 1, h, h + 1]:
if _w_ > width - 1:
continue
if _h_ > height - 1:
continue
if _w_ == w and _h_ == h:
continue
if img_obj.getpixel((_w_, _h_)) < 230: # 这里因为是灰度图像,设置小于230为非白色
count += 1
return count
img = Image.open(image_name)
# 灰度
gray_img = img.convert('L')
w, h = gray_img.size
for _w in range(w):
for _h in range(h):
if _w == 0 or _h == 0:
gray_img.putpixel((_w, _h), 255)
continue
# 计算邻域非白色的个数
pixel = gray_img.getpixel((_w, _h))
if pixel == 255:
continue
if calculate_noise_count(gray_img, _w, _h) < k:
gray_img.putpixel((_w, _h), 255)
return gray_img
if __name__ == '__main__':
image = noise_remove_pil("test.jpg", 4)
image.show() 四、OpenCV实现
- b+ z* {) N9 ?$ K. `; M- \ 使用OpenCV可以提高计算效率:0 b- C" u' G, n% q5 c! Y5 O+ C6 V
import cv2
def noise_remove_cv2(image_name, k):
"""
8邻域降噪
Args:
image_name: 图片文件命名
k: 判断阈值
Returns:
"""
def calculate_noise_count(img_obj, w, h):
"""
计算邻域非白色的个数
Args:
img_obj: img obj
w: width
h: height
Returns:
count (int)
"""
count = 0
width, height = img_obj.shape
for _w_ in [w - 1, w, w + 1]:
for _h_ in [h - 1, h, h + 1]:
if _w_ > width - 1:
continue
if _h_ > height - 1:
continue
if _w_ == w and _h_ == h:
continue
if img_obj[_w_, _h_] < 230: # 二值化的图片设置为255
count += 1
return count
img = cv2.imread(image_name, 1)
# 灰度
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
w, h = gray_img.shape
for _w in range(w):
for _h in range(h):
if _w == 0 or _h == 0:
gray_img[_w, _h] = 255
continue
# 计算邻域pixel值小于255的个数
pixel = gray_img[_w, _h]
if pixel == 255:
continue
if calculate_noise_count(gray_img, _w, _h) < k:
gray_img[_w, _h] = 255
return gray_img
if __name__ == '__main__':
image = noise_remove_cv2("test.jpg", 4)
cv2.imshow('img', image)
cv2.waitKey(10000)
|