实例要求
9 i2 C+ \- E0 T; q6 h" R 实现⼀个复数类 Complex 。 Complex 类包括两个 double 类型的成员 real 和 image ,分别表示复数的实部和虚部。对 Complex 类,重载其流提取、流插⼊运算符,以及加减乘除四则运算运算符。
6 |& K" {6 z( }6 ` 重载流提取运算符 >> ,使之可以读⼊以下格式的输⼊(两个数值之间使⽤空⽩分隔),将第⼀个数值存为复数的实部,将第⼆个数值存为复数的虚部:# q8 }+ g" G3 c7 w- D K( x# F
<p>1</p><p>2</p><p>-1.1 2.0</p><p>+0 -4.5</p>
重载流插⼊运算符 << ,使之可以将复数输出为如下的格式⸺实部如果是⾮负数,则不输出符号位;输出时要包含半⻆左右⼩括号:
' ] ^5 j% H J: q6 e# Z9 V <p>1</p><p>2</p><p>(-1.1+2.0i)</p><p> (0-4.5i)</p>
每次输⼊两个复数,每个复数均包括由空格分隔的两个浮点数,输⼊第⼀个复数后,键⼊回⻋,然后继续输⼊第⼆个复数。
?) v ], m b. ^' R 输出两个复数,每个复数占⼀⾏;复数是由⼩括号包围的形如 (a+bi) 的格式。注意不能输出全⻆括号。
( \/ [' L+ y4 d; o 样例输⼊ , t( C' [6 R2 e" h# x
1
+ R6 m( @; b6 o, G4 w/ N 27 Z# O! ~0 x2 G$ Y* T( j
-1.1 2.0
: p3 [3 s7 a1 R* H) _2 G 0 -4.5
5 F" g; l/ Q- H- u; |8 B 样例输出 " Z2 [$ q. P% J' Q# t4 W) K& e: `
10 M; I- `* O9 H( [
24 P) E! w% H3 d0 f3 n* Z; t
3; w& y( `. p/ {9 b
4
+ q$ S P2 F% m0 e! @ 5
5 b6 P1 j" {" a9 G/ Z8 t/ P: K (-1.1+2i) (0-4.5i)
- T* _! E- f1 }( ] (-1.1-2.5i)
4 o4 {; d+ h3 c' Z( ~" K* Y& D (-1.1+6.5i)8 _ n; {8 }6 D
(9+4.95i)
4 R& n- l4 w1 O: f i1 }( u (-0.444444-0.244444i)2 N/ w4 v5 Q& d3 g+ \
提示
' c8 d3 `9 x6 _# E. K% F; a9 |; x 需要注意,复数的四则运算定义如下所示:' I/ L8 y" a$ y& s5 `8 g% q
加法法则: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a + bi) + (c + di) = (a + c) + (b + d)i (a+bi)+(c+di)=(a+c)+(b+d)i 减法法则: ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i (a + bi) − (c + di) = (a − c) + (b − d)i (a+bi)−(c+di)=(a−c)+(b−d)i 乘法法则: ( a + b i ) × ( c + d i ) = ( a c − b d ) + ( b c + a d ) i (a + bi) × (c + di) = (ac − bd) + (bc + ad)i (a+bi)×(c+di)=(ac−bd)+(bc+ad)i 除法法则: ( a + b i ) ÷ ( c + d i ) = [ ( a c + b d ) / ( c 2 + d 2 ) ] + [ ( b c − a d ) / ( c 2 + d 2 ) ] i (a + bi) ÷ (c + di) = [(ac + bd)/(c^2 + d^2 )] + [(bc − ad)/(c^2 + d^2)]i (a+bi)÷(c+di)=[(ac+bd)/(c2+d2)]+[(bc−ad)/(c2+d2)]i+ w2 A; S& j! h% y& [4 ]
两个流操作运算符必须重载为 Complex 类的友元函数,此外,在输出的时候,你需要判断复数的虚部是否⾮负⸺例如输⼊ 3 1.0 ,那么输出应该为 3+1.0i 。这⾥向⼤家提供⼀种可能的处理⽅法:使⽤ ostream 提供的 setf() 函数 ⸺它可以设置数值输出的时候是否携带标志位。例如,对于以下代码:: b B# Z& y, E5 g5 T6 G
ostream os;
os.setf(std::ios::showpos);
os << 12;
输出内容会是 +12 。
* S4 c% T% l$ q4 L7 [: ? ⽽如果想要取消前⾯的正号输出的话,你可以再执⾏:2 l: n0 y5 @6 u; ~
os.unsetf(std::ios::showpos);
即可恢复默认的设置(不输出额外的正号); b& u- M! m# X9 D/ }9 g! K5 K- P
代码实现
/ x! X3 H. r1 T$ V4 Z #include <iostream>
using namespace std;
const double EPISON = 1e-7;
class Complex
{
private:
double real;
double image;
public:
Complex(const Complex& complex) :real{ complex.real }, image{ complex.image } {
}
Complex(double Real=0, double Image=0) :real{ Real }, image{ Image } {
}
//TODO
Complex operator+(const Complex c) {
return Complex(this->real + c.real, this->image + c.image);
}
Complex operator-(const Complex c) {
return Complex(this->real - c.real, this->image - c.image);
}
Complex operator*(const Complex c) {
double _real = this->real * c.real - this->image * c.image;
double _image = this->image * c.real + this->real * c.image;
return Complex(_real, _image);
}
Complex operator/(const Complex c) {
double _real = (this->real * c.real + this->image * c.image) / (c.real * c.real + c.image * c.image);
double _image = (this->image * c.real - this->real * c.image) / (c.real * c.real + c.image * c.image);
return Complex(_real, _image);
}
friend istream &operator>>(istream &in, Complex &c);
friend ostream &operator<<(ostream &out, const Complex &c);
};
//重载>>
istream &operator>>(istream &in, Complex &c) {
in >> c.real >> c.image;
return in;
}
//重载<<
ostream &operator<<(ostream &out, const Complex &c) {
out << "(";
//判断实部是否为正数或0
if (c.real >= EPISON || (c.real < EPISON && c.real > -EPISON)) out.unsetf(std::ios::showpos);
out << c.real;
out.setf(std::ios::showpos);
out << c.image;
out << "i)";
return out;
}
int main() {
Complex z1, z2;
cin >> z1;
cin >> z2;
cout << z1 << " " << z2 << endl;
cout << z1 + z2 << endl;
cout << z1 - z2 << endl;
cout << z1*z2 << endl;
cout << z1 / z2 << endl;
return 0;
}
7 D* ^1 ^5 {6 `- i5 L+ }: ]