实例要求
* }8 g! f- U) N/ z5 d- ?$ h( d 实现⼀个复数类 Complex 。 Complex 类包括两个 double 类型的成员 real 和 image ,分别表示复数的实部和虚部。对 Complex 类,重载其流提取、流插⼊运算符,以及加减乘除四则运算运算符。
" | R% O/ S1 \$ M 重载流提取运算符 >> ,使之可以读⼊以下格式的输⼊(两个数值之间使⽤空⽩分隔),将第⼀个数值存为复数的实部,将第⼆个数值存为复数的虚部:
$ \: m# h! O* n' q+ q4 d0 J8 I <p>1</p><p>2</p><p>-1.1 2.0</p><p>+0 -4.5</p> 重载流插⼊运算符 << ,使之可以将复数输出为如下的格式⸺实部如果是⾮负数,则不输出符号位;输出时要包含半⻆左右⼩括号:
) [; i! C7 q b <p>1</p><p>2</p><p>(-1.1+2.0i)</p><p> (0-4.5i)</p> 每次输⼊两个复数,每个复数均包括由空格分隔的两个浮点数,输⼊第⼀个复数后,键⼊回⻋,然后继续输⼊第⼆个复数。
, j2 r. E8 D0 S V/ x1 e, i 输出两个复数,每个复数占⼀⾏;复数是由⼩括号包围的形如 (a+bi) 的格式。注意不能输出全⻆括号。) V1 X) s8 ?2 Q% E% |
样例输⼊
/ {5 R3 _" H5 r* e* b" {4 X0 v, q" K9 k 1' ]1 B5 w9 X) @' |, ?
2* q s( J! e! u% B( W: Q% ?
-1.1 2.0
, {- C; {+ t' c9 A- j3 S" k 0 -4.5
9 Z: i& f# W' b5 z 样例输出 ' L: H# l" N/ k% C6 S2 M' L& V
1
3 c6 c, E- _" |; I& {. s 2
$ o+ r- [$ C6 H4 r% I' G% J7 S 3
+ ^# u8 l) p6 _1 C- g2 {- j% o 4
- e$ C) Y8 U: K9 d 5
, i" K0 T) h! ]: S1 I (-1.1+2i) (0-4.5i)
$ o& j4 v* a3 u (-1.1-2.5i)
! I8 E) {. l7 e0 X# s3 R (-1.1+6.5i)( j2 @- b8 V2 `$ P' B& |* y
(9+4.95i) E' }% i7 K3 J, G0 d; m9 T4 g
(-0.444444-0.244444i)# r4 O1 N6 Y0 U$ T0 V3 L
提示
4 t ]6 C/ r; Z4 w* r0 [ 需要注意,复数的四则运算定义如下所示:& z$ v$ P* I% K; \8 R
加法法则: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a + bi) + (c + di) = (a + c) + (b + d)i (a+bi)+(c+di)=(a+c)+(b+d)i 减法法则: ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i (a + bi) − (c + di) = (a − c) + (b − d)i (a+bi)−(c+di)=(a−c)+(b−d)i 乘法法则: ( a + b i ) × ( c + d i ) = ( a c − b d ) + ( b c + a d ) i (a + bi) × (c + di) = (ac − bd) + (bc + ad)i (a+bi)×(c+di)=(ac−bd)+(bc+ad)i 除法法则: ( a + b i ) ÷ ( c + d i ) = [ ( a c + b d ) / ( c 2 + d 2 ) ] + [ ( b c − a d ) / ( c 2 + d 2 ) ] i (a + bi) ÷ (c + di) = [(ac + bd)/(c^2 + d^2 )] + [(bc − ad)/(c^2 + d^2)]i (a+bi)÷(c+di)=[(ac+bd)/(c2+d2)]+[(bc−ad)/(c2+d2)]i
4 a+ x2 r' ?% f. [; X, b 两个流操作运算符必须重载为 Complex 类的友元函数,此外,在输出的时候,你需要判断复数的虚部是否⾮负⸺例如输⼊ 3 1.0 ,那么输出应该为 3+1.0i 。这⾥向⼤家提供⼀种可能的处理⽅法:使⽤ ostream 提供的 setf() 函数 ⸺它可以设置数值输出的时候是否携带标志位。例如,对于以下代码:3 j5 \8 \% Y0 q3 K! I7 ?3 ^6 `$ ~
ostream os;
os.setf(std::ios::showpos);
os << 12; 输出内容会是 +12 。3 s! Q4 K0 l+ Z v2 }+ [' W: y
⽽如果想要取消前⾯的正号输出的话,你可以再执⾏:
, w, ~7 P0 D* b3 m2 R! }- o8 q os.unsetf(std::ios::showpos); 即可恢复默认的设置(不输出额外的正号)
, _" b" ]7 c; g5 x 代码实现
( h. k% M5 _0 t7 p4 ] #include <iostream>
using namespace std;
const double EPISON = 1e-7;
class Complex
{
private:
double real;
double image;
public:
Complex(const Complex& complex) :real{ complex.real }, image{ complex.image } {
}
Complex(double Real=0, double Image=0) :real{ Real }, image{ Image } {
}
//TODO
Complex operator+(const Complex c) {
return Complex(this->real + c.real, this->image + c.image);
}
Complex operator-(const Complex c) {
return Complex(this->real - c.real, this->image - c.image);
}
Complex operator*(const Complex c) {
double _real = this->real * c.real - this->image * c.image;
double _image = this->image * c.real + this->real * c.image;
return Complex(_real, _image);
}
Complex operator/(const Complex c) {
double _real = (this->real * c.real + this->image * c.image) / (c.real * c.real + c.image * c.image);
double _image = (this->image * c.real - this->real * c.image) / (c.real * c.real + c.image * c.image);
return Complex(_real, _image);
}
friend istream &operator>>(istream &in, Complex &c);
friend ostream &operator<<(ostream &out, const Complex &c);
};
//重载>>
istream &operator>>(istream &in, Complex &c) {
in >> c.real >> c.image;
return in;
}
//重载<<
ostream &operator<<(ostream &out, const Complex &c) {
out << "(";
//判断实部是否为正数或0
if (c.real >= EPISON || (c.real < EPISON && c.real > -EPISON)) out.unsetf(std::ios::showpos);
out << c.real;
out.setf(std::ios::showpos);
out << c.image;
out << "i)";
return out;
}
int main() {
Complex z1, z2;
cin >> z1;
cin >> z2;
cout << z1 << " " << z2 << endl;
cout << z1 + z2 << endl;
cout << z1 - z2 << endl;
cout << z1*z2 << endl;
cout << z1 / z2 << endl;
return 0;
}/ p* s1 L1 Z* f. w' q* R# {7 s