实例要求 ) B8 e' s1 U, p4 P8 u
实现⼀个复数类 Complex 。 Complex 类包括两个 double 类型的成员 real 和 image ,分别表示复数的实部和虚部。对 Complex 类,重载其流提取、流插⼊运算符,以及加减乘除四则运算运算符。
4 y; S( T3 ~( `1 C 重载流提取运算符 >> ,使之可以读⼊以下格式的输⼊(两个数值之间使⽤空⽩分隔),将第⼀个数值存为复数的实部,将第⼆个数值存为复数的虚部:2 i# j& M9 O- ?
<p>1</p><p>2</p><p>-1.1 2.0</p><p>+0 -4.5</p> 重载流插⼊运算符 << ,使之可以将复数输出为如下的格式⸺实部如果是⾮负数,则不输出符号位;输出时要包含半⻆左右⼩括号:
& ~/ J4 E' l3 P# W; L! l2 Z <p>1</p><p>2</p><p>(-1.1+2.0i)</p><p> (0-4.5i)</p> 每次输⼊两个复数,每个复数均包括由空格分隔的两个浮点数,输⼊第⼀个复数后,键⼊回⻋,然后继续输⼊第⼆个复数。
, ^' E) V8 g/ V# P 输出两个复数,每个复数占⼀⾏;复数是由⼩括号包围的形如 (a+bi) 的格式。注意不能输出全⻆括号。
0 c# T/ p/ C6 k3 e 样例输⼊ & U* T4 \6 l3 e
12 C8 P! V) {! |" y* r# L3 B5 |
2& @5 V f8 A! h8 d- z1 i$ c" B: {
-1.1 2.0
+ M* q1 S& R* e9 T2 v* T- R 0 -4.5 l; b( {4 u9 @5 S
样例输出
9 `1 u) c, c3 e1 K' `# ]2 F. E 18 l# N* H! T7 ?- v' w) X
2
. R% i* K$ V. T9 q 3* u, Z2 U3 E- [' `! t1 z
4
4 }2 ?6 N0 Z6 V3 F# X+ I 50 L( U0 [3 Z8 J& S) g+ n7 l6 g
(-1.1+2i) (0-4.5i)
! D1 v0 a3 R' m4 e (-1.1-2.5i)
% q, J1 \. O s7 R$ S1 \ (-1.1+6.5i)
0 i" F/ J3 Y* o8 V1 H (9+4.95i)( v4 w: j9 I1 j2 W: }4 O& k4 p, l
(-0.444444-0.244444i)
2 ~7 ^: |0 C5 r+ Y: o2 ^ 提示 8 m2 N& P, r4 F- _; W
需要注意,复数的四则运算定义如下所示:6 X3 v; j3 p( R$ f4 W6 Q
加法法则: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a + bi) + (c + di) = (a + c) + (b + d)i (a+bi)+(c+di)=(a+c)+(b+d)i 减法法则: ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i (a + bi) − (c + di) = (a − c) + (b − d)i (a+bi)−(c+di)=(a−c)+(b−d)i 乘法法则: ( a + b i ) × ( c + d i ) = ( a c − b d ) + ( b c + a d ) i (a + bi) × (c + di) = (ac − bd) + (bc + ad)i (a+bi)×(c+di)=(ac−bd)+(bc+ad)i 除法法则: ( a + b i ) ÷ ( c + d i ) = [ ( a c + b d ) / ( c 2 + d 2 ) ] + [ ( b c − a d ) / ( c 2 + d 2 ) ] i (a + bi) ÷ (c + di) = [(ac + bd)/(c^2 + d^2 )] + [(bc − ad)/(c^2 + d^2)]i (a+bi)÷(c+di)=[(ac+bd)/(c2+d2)]+[(bc−ad)/(c2+d2)]i
" a3 x+ L( J' j4 t6 Q 两个流操作运算符必须重载为 Complex 类的友元函数,此外,在输出的时候,你需要判断复数的虚部是否⾮负⸺例如输⼊ 3 1.0 ,那么输出应该为 3+1.0i 。这⾥向⼤家提供⼀种可能的处理⽅法:使⽤ ostream 提供的 setf() 函数 ⸺它可以设置数值输出的时候是否携带标志位。例如,对于以下代码:7 @3 }' _% ?7 y% {8 h$ C
ostream os;
os.setf(std::ios::showpos);
os << 12; 输出内容会是 +12 。* g2 N0 h L `2 P3 n! S4 m& \, l
⽽如果想要取消前⾯的正号输出的话,你可以再执⾏:
- Z) K' y) k" K7 Y6 y& e os.unsetf(std::ios::showpos); 即可恢复默认的设置(不输出额外的正号); n5 N3 a/ S9 | K. R2 Y
代码实现 ' o7 y4 Y5 M2 Q) ^# w7 Z p7 i
#include <iostream>
using namespace std;
const double EPISON = 1e-7;
class Complex
{
private:
double real;
double image;
public:
Complex(const Complex& complex) :real{ complex.real }, image{ complex.image } {
}
Complex(double Real=0, double Image=0) :real{ Real }, image{ Image } {
}
//TODO
Complex operator+(const Complex c) {
return Complex(this->real + c.real, this->image + c.image);
}
Complex operator-(const Complex c) {
return Complex(this->real - c.real, this->image - c.image);
}
Complex operator*(const Complex c) {
double _real = this->real * c.real - this->image * c.image;
double _image = this->image * c.real + this->real * c.image;
return Complex(_real, _image);
}
Complex operator/(const Complex c) {
double _real = (this->real * c.real + this->image * c.image) / (c.real * c.real + c.image * c.image);
double _image = (this->image * c.real - this->real * c.image) / (c.real * c.real + c.image * c.image);
return Complex(_real, _image);
}
friend istream &operator>>(istream &in, Complex &c);
friend ostream &operator<<(ostream &out, const Complex &c);
};
//重载>>
istream &operator>>(istream &in, Complex &c) {
in >> c.real >> c.image;
return in;
}
//重载<<
ostream &operator<<(ostream &out, const Complex &c) {
out << "(";
//判断实部是否为正数或0
if (c.real >= EPISON || (c.real < EPISON && c.real > -EPISON)) out.unsetf(std::ios::showpos);
out << c.real;
out.setf(std::ios::showpos);
out << c.image;
out << "i)";
return out;
}
int main() {
Complex z1, z2;
cin >> z1;
cin >> z2;
cout << z1 << " " << z2 << endl;
cout << z1 + z2 << endl;
cout << z1 - z2 << endl;
cout << z1*z2 << endl;
cout << z1 / z2 << endl;
return 0;
}
f- g3 X5 M3 b' k& U