实例要求
6 H5 V- P# y3 _! q7 L7 i 实现⼀个复数类 Complex 。 Complex 类包括两个 double 类型的成员 real 和 image ,分别表示复数的实部和虚部。对 Complex 类,重载其流提取、流插⼊运算符,以及加减乘除四则运算运算符。
$ X3 Z; T$ R' C" T$ G' e7 J 重载流提取运算符 >> ,使之可以读⼊以下格式的输⼊(两个数值之间使⽤空⽩分隔),将第⼀个数值存为复数的实部,将第⼆个数值存为复数的虚部:% W; x9 M, K0 @( V+ Z
<p>1</p><p>2</p><p>-1.1 2.0</p><p>+0 -4.5</p> 重载流插⼊运算符 << ,使之可以将复数输出为如下的格式⸺实部如果是⾮负数,则不输出符号位;输出时要包含半⻆左右⼩括号:4 I* M0 G0 N( Y% R1 ~
<p>1</p><p>2</p><p>(-1.1+2.0i)</p><p> (0-4.5i)</p> 每次输⼊两个复数,每个复数均包括由空格分隔的两个浮点数,输⼊第⼀个复数后,键⼊回⻋,然后继续输⼊第⼆个复数。
! T# v1 \: w+ \7 W: E4 I 输出两个复数,每个复数占⼀⾏;复数是由⼩括号包围的形如 (a+bi) 的格式。注意不能输出全⻆括号。
& T C ]3 H( w k+ @ h1 z 样例输⼊
9 ?* t' S7 q( D- s: I" ?3 Z 1* Y! h- T6 Y9 C, `
2
b/ g4 g% y+ Z, T+ H9 \ -1.1 2.0
+ @3 i; z/ o: z' `* _; H6 ] 0 -4.5
6 b+ t, Q9 W5 Q7 r) f5 Q 样例输出
9 M$ ?. f7 s0 n6 ?$ u: S1 B 1
) Q1 ^0 G1 U U# } 2
# l& L$ `8 U3 `" F) i+ ~ 3
5 K d+ T# R3 g) Q5 m( F- A 4; T" o6 ]7 ?7 g8 H5 d: @
5
4 m* e* o; l( @9 N (-1.1+2i) (0-4.5i)8 a, `. y( j* z0 f. ]
(-1.1-2.5i)
* S0 d& R5 D2 Y: A (-1.1+6.5i)& [4 q7 |' m. X
(9+4.95i)
, g" n& {& E, R- J5 I# \ (-0.444444-0.244444i), K' i) v' w# n7 H9 h8 d
提示 2 M1 K6 T" J$ H" K$ Y
需要注意,复数的四则运算定义如下所示:
2 z) g: x8 @" K7 h5 h5 S 加法法则: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a + bi) + (c + di) = (a + c) + (b + d)i (a+bi)+(c+di)=(a+c)+(b+d)i 减法法则: ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i (a + bi) − (c + di) = (a − c) + (b − d)i (a+bi)−(c+di)=(a−c)+(b−d)i 乘法法则: ( a + b i ) × ( c + d i ) = ( a c − b d ) + ( b c + a d ) i (a + bi) × (c + di) = (ac − bd) + (bc + ad)i (a+bi)×(c+di)=(ac−bd)+(bc+ad)i 除法法则: ( a + b i ) ÷ ( c + d i ) = [ ( a c + b d ) / ( c 2 + d 2 ) ] + [ ( b c − a d ) / ( c 2 + d 2 ) ] i (a + bi) ÷ (c + di) = [(ac + bd)/(c^2 + d^2 )] + [(bc − ad)/(c^2 + d^2)]i (a+bi)÷(c+di)=[(ac+bd)/(c2+d2)]+[(bc−ad)/(c2+d2)]i
9 e0 }6 K1 \( D. D' J% a 两个流操作运算符必须重载为 Complex 类的友元函数,此外,在输出的时候,你需要判断复数的虚部是否⾮负⸺例如输⼊ 3 1.0 ,那么输出应该为 3+1.0i 。这⾥向⼤家提供⼀种可能的处理⽅法:使⽤ ostream 提供的 setf() 函数 ⸺它可以设置数值输出的时候是否携带标志位。例如,对于以下代码:: ]6 f! d/ `/ V+ [7 G) H
ostream os;
os.setf(std::ios::showpos);
os << 12; 输出内容会是 +12 。
v& o m# \1 e# x3 N. t( q ⽽如果想要取消前⾯的正号输出的话,你可以再执⾏:
* G. q' J; ?6 S: a2 x os.unsetf(std::ios::showpos); 即可恢复默认的设置(不输出额外的正号)
+ s2 a& `9 e3 }) K( [9 T 代码实现 1 f) B+ `) S8 p1 |% Y
#include <iostream>
using namespace std;
const double EPISON = 1e-7;
class Complex
{
private:
double real;
double image;
public:
Complex(const Complex& complex) :real{ complex.real }, image{ complex.image } {
}
Complex(double Real=0, double Image=0) :real{ Real }, image{ Image } {
}
//TODO
Complex operator+(const Complex c) {
return Complex(this->real + c.real, this->image + c.image);
}
Complex operator-(const Complex c) {
return Complex(this->real - c.real, this->image - c.image);
}
Complex operator*(const Complex c) {
double _real = this->real * c.real - this->image * c.image;
double _image = this->image * c.real + this->real * c.image;
return Complex(_real, _image);
}
Complex operator/(const Complex c) {
double _real = (this->real * c.real + this->image * c.image) / (c.real * c.real + c.image * c.image);
double _image = (this->image * c.real - this->real * c.image) / (c.real * c.real + c.image * c.image);
return Complex(_real, _image);
}
friend istream &operator>>(istream &in, Complex &c);
friend ostream &operator<<(ostream &out, const Complex &c);
};
//重载>>
istream &operator>>(istream &in, Complex &c) {
in >> c.real >> c.image;
return in;
}
//重载<<
ostream &operator<<(ostream &out, const Complex &c) {
out << "(";
//判断实部是否为正数或0
if (c.real >= EPISON || (c.real < EPISON && c.real > -EPISON)) out.unsetf(std::ios::showpos);
out << c.real;
out.setf(std::ios::showpos);
out << c.image;
out << "i)";
return out;
}
int main() {
Complex z1, z2;
cin >> z1;
cin >> z2;
cout << z1 << " " << z2 << endl;
cout << z1 + z2 << endl;
cout << z1 - z2 << endl;
cout << z1*z2 << endl;
cout << z1 / z2 << endl;
return 0;
}
+ Q8 P2 _. q3 y$ l/ W& J