QQ登录

只需要一步,快速开始

APP扫码登录

只需要一步,快速开始

查看: 2308|回复: 0

[C/C++/Qt] C++ 实现一个复数类的实例代码

[复制链接]

等级头衔

积分成就    金币 : 2861
   泡泡 : 1516
   精华 : 6
   在线时间 : 1322 小时
   最后登录 : 2025-10-13

丰功伟绩

优秀达人突出贡献荣誉管理论坛元老活跃会员

联系方式
发表于 2021-4-19 11:22:37 | 显示全部楼层 |阅读模式
实例要求# @+ O* _6 h0 O9 O# r
       实现⼀个复数类 Complex 。 Complex 类包括两个 double 类型的成员 real 和 image ,分别表示复数的实部和虚部。对 Complex 类,重载其流提取、流插⼊运算符,以及加减乘除四则运算运算符。  P' d2 X0 P/ y8 C5 l7 A
       重载流提取运算符 >> ,使之可以读⼊以下格式的输⼊(两个数值之间使⽤空⽩分隔),将第⼀个数值存为复数的实部,将第⼆个数值存为复数的虚部:9 d1 \, V: ?3 z3 `/ J/ o* T* N) R
<p>1</p><p>2</p><p>-1.1 2.0</p><p>+0 -4.5</p>
      重载流插⼊运算符 << ,使之可以将复数输出为如下的格式⸺实部如果是⾮负数,则不输出符号位;输出时要包含半⻆左右⼩括号:" N7 X6 E/ W, g9 h6 P" w* ]
<p>1</p><p>2</p><p>(-1.1+2.0i)</p><p> (0-4.5i)</p>
      每次输⼊两个复数,每个复数均包括由空格分隔的两个浮点数,输⼊第⼀个复数后,键⼊回⻋,然后继续输⼊第⼆个复数。5 j' J; X) H0 m5 A3 }
       输出两个复数,每个复数占⼀⾏;复数是由⼩括号包围的形如 (a+bi) 的格式。注意不能输出全⻆括号。2 w' \; k# }2 X8 @( S; Q5 G
样例输⼊
( \8 T+ \$ {# [  r$ x16 G( h0 k: F" b# e5 C# w
22 X# K% v4 R2 M' s
-1.1 2.0
8 l2 Z6 n, Y* n3 Q) t 0 -4.5
4 `# }0 {: x- v( S  M" U" u样例输出. E0 c( h* t3 F+ e$ w' k: R
17 ~6 H# E- B" {: b) p( g
2' O1 h( B9 p; Z/ _$ q8 u. W% }8 ~
3* t6 x/ G: Y0 a' n
4! |$ k" T) R& w& j/ p8 G
5, c& ~; o+ L/ Q" y# a7 [1 ~% }) f
(-1.1+2i) (0-4.5i)
& @& h3 A6 R( O" i: j# t; l(-1.1-2.5i)
  a2 U9 l3 T- Y. K- n0 `(-1.1+6.5i)1 e4 B$ P7 Y# ]' j9 i1 ]5 G
(9+4.95i)7 H7 M; A* F8 d2 L& P* x7 [
(-0.444444-0.244444i)1 @, Q' S; K0 G* w
提示
! S0 ]' e* z$ i4 @       需要注意,复数的四则运算定义如下所示:
4 M9 ^/ @, a% K5 }
  • 加法法则: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a + bi) + (c + di) = (a + c) + (b + d)i (a+bi)+(c+di)=(a+c)+(b+d)i
  • 减法法则: ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i (a + bi) − (c + di) = (a − c) + (b − d)i (a+bi)−(c+di)=(a−c)+(b−d)i
  • 乘法法则: ( a + b i ) × ( c + d i ) = ( a c − b d ) + ( b c + a d ) i (a + bi) × (c + di) = (ac − bd) + (bc + ad)i (a+bi)×(c+di)=(ac−bd)+(bc+ad)i
  • 除法法则: ( a + b i ) ÷ ( c + d i ) = [ ( a c + b d ) / ( c 2 + d 2 ) ] + [ ( b c − a d ) / ( c 2 + d 2 ) ] i (a + bi) ÷ (c + di) = [(ac + bd)/(c^2 + d^2 )] + [(bc − ad)/(c^2 + d^2)]i (a+bi)÷(c+di)=[(ac+bd)/(c2+d2)]+[(bc−ad)/(c2+d2)]i+ d  i% D  ^# w% m+ R! S. L( x
       两个流操作运算符必须重载为 Complex 类的友元函数,此外,在输出的时候,你需要判断复数的虚部是否⾮负⸺例如输⼊ 3 1.0 ,那么输出应该为 3+1.0i 。这⾥向⼤家提供⼀种可能的处理⽅法:使⽤ ostream 提供的 setf() 函数 ⸺它可以设置数值输出的时候是否携带标志位。例如,对于以下代码:: n' V0 W; Y; M
ostream os;
os.setf(std::ios::showpos);
os << 12;
      输出内容会是 +12 。
8 w8 `$ e& o/ d8 j       ⽽如果想要取消前⾯的正号输出的话,你可以再执⾏:
: N- U& M3 }" C. v/ q$ Y8 `: J
os.unsetf(std::ios::showpos);
      即可恢复默认的设置(不输出额外的正号)
% k$ a# z: v9 T" s# o7 ]代码实现, k- A- _8 C. M2 }
#include <iostream>
using namespace std;

const double EPISON = 1e-7;
class Complex
{
private:
          double real;
          double image;
public:
          Complex(const Complex& complex) :real{ complex.real }, image{ complex.image } {

          }
          Complex(double Real=0, double Image=0) :real{ Real }, image{ Image } {

          }
          //TODO
    Complex operator+(const Complex c) {
        return Complex(this->real + c.real, this->image + c.image);
    }
    
    Complex operator-(const Complex c) {
        return Complex(this->real - c.real, this->image - c.image);
    }
    
    Complex operator*(const Complex c) {
        double _real = this->real * c.real - this->image * c.image;
        double _image = this->image * c.real + this->real * c.image;
        return Complex(_real, _image);
    }
    
    Complex operator/(const Complex c) {
        double _real = (this->real * c.real + this->image * c.image) / (c.real * c.real + c.image * c.image);
        double _image = (this->image * c.real - this->real * c.image) / (c.real * c.real + c.image * c.image);
        return Complex(_real, _image);
    }
    friend istream &operator>>(istream &in, Complex &c);
    friend ostream &operator<<(ostream &out, const Complex &c);
};

//重载>>
istream &operator>>(istream &in, Complex &c) {
    in >> c.real >> c.image;
    return in;
}

//重载<<
ostream &operator<<(ostream &out, const Complex &c) {
    out << "(";
    //判断实部是否为正数或0
    if (c.real >= EPISON || (c.real < EPISON && c.real > -EPISON)) out.unsetf(std::ios::showpos);
    out << c.real;
    out.setf(std::ios::showpos);
    out << c.image;
    out << "i)";
    return out;
}

int main() {
          Complex z1, z2;
          cin >> z1;
          cin >> z2;
          cout << z1 << " " << z2 << endl;
          cout << z1 + z2 << endl;
          cout << z1 - z2 << endl;
          cout << z1*z2 << endl;
          cout << z1 / z2 << endl;
          return 0;
}
; j8 d1 ~1 ]/ W4 S
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|手机版|小黑屋|paopaomj.COM ( 渝ICP备18007172号|渝公网安备50010502503914号 )

GMT+8, 2025-11-25 23:18

Powered by paopaomj X3.5 © 2016-2025 sitemap

快速回复 返回顶部 返回列表